Author: FunnyWii

深度学习 - 卷积神经网络 Convolutional Networks

卷积神经网路 Convolutional Neural Network CNN CNN的结构 卷积层 Convolution 池化层(下采样) Polling 全连接层 Full connection 卷积层 最基础的2D卷积操作,涉及到一个2D的过滤器(filter),或者说是核(kernel)。

FunnyWii Published on 2022-11-04

深度学习 - 深度前馈网络 Deep Feedforward Networks

在机器学习中,如果想对对非线性函数进行建模,深度前馈网络能够实现非线性函数的建模。 在深度学习中,使用一个简单函数的深度链来学习输入数据。 线性函数的输入函数: \hat{y} = \theta^Tx 非线性函数的输入函数:\hat{y} = f(\phi(x);\theta) 其中,\phi(x)

FunnyWii Published on 2022-11-03

关于深度学习(Deep Learning ACS61011)这门课

关于这门课 这门课的授课老师是号称谢菲尔德大学最受欢迎的Lecture - Dr Sean Anderson。课堂的风格确实比较生动有趣,而且因为Deep Learning目前仍然比较前沿的原因,课堂上时常举一些比较cool或者exciting的例子,比如一次关于CUDA的课堂,开始跟我们讨论比特币

FunnyWii Published on 2022-11-03

多系统BIOS的默认启动顺序调整

问题 我的ThinkPad X280装了Ubuntu和Windows的双系统,但是我发现BIOS的启动顺序中,排第一的是Ubuntu,第三才是Windows。 Figure 1 初始BIOS启动顺序 这也就导致了,如果我开机之后什么都不操作,会默认进入Ubuntu,问题是,目前我用的更多的是Wind

FunnyWii Published on 2022-11-02

机器学习 - 正则化和优化器(Regularisation and Optimisers)

正则化回归模型 在一个模型中,自由度(可调节的参数)越多,就越容易过度拟合。因此需要约束这个模型,又称正则化 常见的正则化方法: Ridge Regression,也被称作L2 Regression Lasso Regression,也被称作L1 Regression Elastic Net 在上述

FunnyWii Published on 2022-10-27

机器学习- 人工神经网络 Artificial Neural Networks

Artificial Neural Networks, ANN ANN是受构成动物大脑的生物神经网络模糊启发的计算系统。本文简单介绍一下ANN,详细的内容会在后面写深度学习的时候再说。 ANN可用于: 分类(多层感知器) - 模式识别(多层感知器、延时神经网络和递归网络等) 回归/函数逼近(前馈架构

FunnyWii Published on 2022-10-26

机器学习 - 分层聚类和Kmeans

聚类 聚类是一种无监督的机器学习方法,它能使类似的对象从其他对象中分离出来。它是无监督的,因为我们没有给模型任何标签;它只是检查特征并确定哪些样本是相似的并属于一个群组。 常见的聚类算法有: 分层聚类算法(Hierarchical Cluster Analysis HCA) k-Means Expe

FunnyWii Published on 2022-10-26

机器学习 - 主成分分析(PCA)

主成分分析 通常获取到的数据集都会有很高的维度,会给运算造成很大压力,所以需要降维,但是我们并不知道哪些数据更关键,因此引入了主成分分析 (Principal Component Analyses,PCA)的方法。 假设有个m维向量 \vec X,我们希望用 I个变量来保存它,如果简单地把 \vec

FunnyWii Published on 2022-10-25

机器学习 - 特征工程(Feature Engineering)

机器学习的建模流程 Figure 1 Pipeline of Machine Learning 研究问题 采集数据 数据清洗 在采集到的数据中,可能有丢失的,比如NaN或者null,这种数据是不能直接拿来用的。为了解决这个问题,这部分数据会被imputed,具体impute的方法要根据数据的类型来决

FunnyWii Published on 2022-10-23

机器学习 - 决策树和随机森林(Decision Trees and Random Forest Classifiers)

决策树(Decision Trees) 对于决策树,目标变量是连续数值的,被称为回归树;若是离散值,被称为分类树。 决策树的组成 · 根结点(Root node):代表整个数据集或采样,并且可以被分为2个或多个同质的集合。 · 决策节点(Decision node):通过条件判断,决定如何分支。 ·

FunnyWii Published on 2022-10-22

机器学习 - 回归(Regression)

线性回归 回归被用来估计或解释一个独立变量(y)和一个or更多独立变量(x_i)之间的关系。最基础的回归-线性回归-基于一个线性方程。 假设这个方程为: y = \theta_1 x+ \theta_0 此处 y 是一个独立变量,\theta_0 和 \theta_1 是模型的参数,x 是另一个独立

FunnyWii Published on 2022-10-22

关于机器学习(Data Modelling and Machine Intelligence ACS61013)这门课

Data Modelling and Machine Intelligence (DMMI) 数据建模和机器智能 其实这门课就是在讲机器学习(Machine Learning),起个这么长的名字属实没必要。 这门课的老师是 Dr John Oyekan,是一名非常年轻的,刚刚入职没多久的,黑人讲师,

FunnyWii Published on 2022-10-21
Previous Next