主要是依靠 copyTo()方法实现图像的传递。 copyTo 内存分配:当源图像和目标图像 size和 type一致时,不会分配新内存;否则先申请新内存空间再拷贝 目标图像:可以将数据复制到指定的目标图像中,目标图像可以是已经存在的图像或者新图像。 MASK:通过MASK可以指定ROI clone
控制海康球头的3种方法 做了一些调查,目前控制海康相机的方法主要有三种 海康SDK,目前海康提供了多个平台的SDK,包括Windows,X86Linux和ARM Linux(Jetson),见HiKSDK onvif,不过这个库是基于Python2做的,用起来会有些麻烦。 HTTP方式。 树莓派py
安装JDK Jetpack一般不带JDK,sudo apt install openjdk-11-jdk 装一个。 安装Bazel 针对Mediapipe这个项目,你需要使用的Bazel版本,取决于你下载的Mediapipe版本所使用的Bazel版本(有点绕,高可以,低不行)。 要问CMake能不能
深度学习方法 车道线检测常用数据集见 FunnyWii's Zone 车道线检测功能综述【传统方法】 基于分割的方法 利用语义分割或实例分割方法来区分图像中的车道线与其他物体或背景。这种方法将车道线检测问题转化为一个像素级分类问题。这种方法会将场景图片的每一个车道线像素都进行分类,判断该像素是否属于
车道线检测技术 车道线检测技术是计算机视觉和自动驾驶领域中的关键技术之一,它能够帮助车辆在道路上准确识别和跟踪车道线,从而实现自动驾驶、车道保持等功能。 车道线检测方法总体上可以分为 传统方法 和 基于深度学习的方法。 车道线数据集 数据集 数量(张) 尺寸 场景 特点 TuSimple 72k 1
写在前面 现在车上有7个相机,如果想要用OpenCV同时读取这些相机的画面的话,实例化7个 VideoCapture是没有问题的,虽然会涉及到多线程的问题,但是多线程我还不会(ciao,是反废话)。直接实例化多个 VideoCapture未免有些显得技术力过低,因此使用 vector容器来存放读取的
写在前面 为什么不直接输出一堆内容,主要是因为自己太菜了,上学时的那些深度学习知识,已经差不多都还给老师了,而且工程应用又是另一码事。所以我就一边用mmyolo框架训模型,一边从头学起。。。 快成炼丹师了,不过对如何调整hyperparameters一点头绪都没。以下提到的功能的使用,都可以在mmy
写在前面 YOLOv8 是 Ultralytics 公司在 2023 年 1月 10 号开源的 YOLOv5 的下一个重大更新版本,目前支持目标检测,目标分割,物体分类和姿态估计。 很多YOLO介绍blog会附上下面的结构图,虽然99%的人不会去看,而且我也是那99%的其中一员,不过为显专业(啊这该
GLIBCXX3.4.9 not found 解决方案 我是因为python的opencv的问题,可以尝试安装python版的opencv pip install opencv-python 但是如果上面的方法解决不了这个问题, sudo apt-get install libstdc++6 A