CUDA 内存模型 存储器的类型有两种: 可编程:显式控制哪些数据存放 不可编程:不能决定数据存储位置 在CPU层次结构中,一级缓存(L1 Cache)和二级缓存(L2 Cache)都是不可编程的。可编程的存储器类型包括: 寄存器 共享内存 本地内存 常量内存 纹理内存 全局内存 下图为上面提到的存
并行归约问题 先解释一下什么是归约(Reduction),归约是将某个计算问题变换为另一个问题的过程。在CUDA运算中,在向量中执行满足交换律和结合律的运算,被称为归约问题。每次迭代计算方式都是相同的(归),从一组多个数据最后得到一个数(约)^[1]^。比如当给定N个数值,求其SUM/MAX/MIN
深度图 深度图 (Depth Image, Depth Map),将图像中的每个像素都编码为相机到场景中某个点的距离,可以提供图像中物体的空间信息。深度图通过坐标转换可以转换为点云数据,organized点云也可以转换为深度图数据。 绝对深度和相对深度 绝对深度:空间中物体和相机间的距离,有量纲。
主要是依靠 copyTo()方法实现图像的传递。 copyTo 内存分配:当源图像和目标图像 size和 type一致时,不会分配新内存;否则先申请新内存空间再拷贝 目标图像:可以将数据复制到指定的目标图像中,目标图像可以是已经存在的图像或者新图像。 MASK:通过MASK可以指定ROI clone
这一部分是CUDA的核心部分,涉及到了硬件和程序的执行模型。 SM 流式多处理器(Stream Multi-processor,SM)是构建整个GPU的核心模块。GPU的硬件并行,是通过复制了多个SM来实现的。一个Block只能在一个SM上被调度。 下图包含了SM的关键组件 CUDA核心 (Core
CUDA编程结构 在GPU上执行的函数称为CUDA核函数(Kernel Function),核函数会被GPU上多个线程执行。典型的CUDA程序遵循如下模式: 把数据从CPU内存(HOST)拷贝至GPU内存(DEVICE) 调用该Kernel函数,对DEVICE中的数据进行操作 将数据从DEVICE传
写在前面(废话,请跳过) 本来自己的脑子里是不存在CUDA编程这个东西的,没错,就是压根儿没听说过。 之所以了解到这个东西,是因为最近开始做AVM (Around View Monitor),或者说SVS (Surrounding View System),利用4个广角相机,实现车辆周围的360°环
深度学习方法 车道线检测常用数据集见 FunnyWii's Zone 车道线检测功能综述【传统方法】 基于分割的方法 利用语义分割或实例分割方法来区分图像中的车道线与其他物体或背景。这种方法将车道线检测问题转化为一个像素级分类问题。这种方法会将场景图片的每一个车道线像素都进行分类,判断该像素是否属于
车道线检测技术 车道线检测技术是计算机视觉和自动驾驶领域中的关键技术之一,它能够帮助车辆在道路上准确识别和跟踪车道线,从而实现自动驾驶、车道保持等功能。 车道线检测方法总体上可以分为 传统方法 和 基于深度学习的方法。 车道线数据集 数据集 数量(张) 尺寸 场景 特点 TuSimple 72k 1
写在前面 现在车上有7个相机,如果想要用OpenCV同时读取这些相机的画面的话,实例化7个 VideoCapture是没有问题的,虽然会涉及到多线程的问题,但是多线程我还不会(ciao,是反废话)。直接实例化多个 VideoCapture未免有些显得技术力过低,因此使用 vector容器来存放读取的