FunnyWii's Zone 时日曷丧,与汝偕亡

机器学习 - 主成分分析(PCA)

主成分分析 通常获取到的数据集都会有很高的维度,会给运算造成很大压力,所以需要降维,但是我们并不知道哪些数据更关键,因此引入了主成分分析 (Principal Component Analyses,PCA)的方法。 假设有个m维向量 \vec X,我们希望用 I个变量来保存它,如果简单地把 \vec

FunnyWii Published on 2022-10-25

机器学习 - 特征工程(Feature Engineering)

机器学习的建模流程 Figure 1 Pipeline of Machine Learning 研究问题 采集数据 数据清洗 在采集到的数据中,可能有丢失的,比如NaN或者null,这种数据是不能直接拿来用的。为了解决这个问题,这部分数据会被imputed,具体impute的方法要根据数据的类型来决

FunnyWii Published on 2022-10-23

机器学习 - 决策树和随机森林(Decision Trees and Random Forest Classifiers)

决策树(Decision Trees) 对于决策树,目标变量是连续数值的,被称为回归树;若是离散值,被称为分类树。 决策树的组成 · 根结点(Root node):代表整个数据集或采样,并且可以被分为2个或多个同质的集合。 · 决策节点(Decision node):通过条件判断,决定如何分支。 ·

FunnyWii Published on 2022-10-22

机器学习 - 回归(Regression)

线性回归 回归被用来估计或解释一个独立变量(y)和一个or更多独立变量(x_i)之间的关系。最基础的回归-线性回归-基于一个线性方程。 假设这个方程为: y = \theta_1 x+ \theta_0 此处 y 是一个独立变量,\theta_0 和 \theta_1 是模型的参数,x 是另一个独立

FunnyWii Published on 2022-10-22

关于机器学习(Data Modelling and Machine Intelligence ACS61013)这门课

Data Modelling and Machine Intelligence (DMMI) 数据建模和机器智能 其实这门课就是在讲机器学习(Machine Learning),起个这么长的名字属实没必要。 这门课的老师是 Dr John Oyekan,是一名非常年轻的,刚刚入职没多久的,黑人讲师,

FunnyWii Published on 2022-10-21

机器学习八股文 - 基础概念

什么是Overfitting 算法在训练集上表现好,但在测试集上表现不好,泛化性能差。 引起过拟合的原因 模型本身过于复杂,以至于拟合了训练样本集中的噪声。 如何解决过拟合 交叉验证。 用更多的数据进行训练。 数据增强。 特征选择。 Early Stop。 正则化 Regularization。 什

FunnyWii Published on 2022-10-20

关于FFT (Fast - Fourier Transformation) 快速傅里叶变换

傅里叶变换 傅里叶的原理说明:任何连续测量的时序或信号,都可以用不同频率的正弦波信号的无限叠加来表示。 在数学的角度来看,傅里叶变换算法利用直接测量得到的初始信号,用累加的方式来计算该初始信号中不同正弦波信号的频率,幅值和相位。 而从物理学的角度来看,傅里叶变换可以帮助我们将时域的信号转为频域来分析

FunnyWii Published on 2022-07-28
Previous Next