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1 Introduction

This article provides a proof for the relationship mentioned in [1]:

Lemma 1 Assume that the components of q and k are independent random variables with mean 0
and variance 1. Then their dot product, q - k = de

1=

1 Qiks, has mean 0 and variance d,.

The structure of this article can be summarized as followed: (1) Section [2] introduces the basic
properties of mean and variance of random variables; (2) Section [3]and [ revisit properties of sum
and product of random variables; and (3) Section 5| provides a final proof to Lemmal ]

2 Foundations

2.1 Variance

The variance of a random variable X is defined as:

(D

2.2 Covariance

The covariance of two random variables X and Y is defined as:

)

Note also that:

cov[X, X| = var[X] 3)

The covariance of two independent random variables is 0.



3 Product of Random Variables

3.1 Mean of Product of Random Variables

By the law of total expectation, the mean of the product of two random variables X and Y can be
derived as:

E[XY] = E[E[XY|Y]]

4
= B[y BX|V]] @
When X and Y are independent, E[X |Y] = E[X], the above equation can be simplified as:
E[XY]=E[Y - E[X]] 5
— B[X] - E[Y] )
3.2 Variance of Product of Random Variables
The variance of the product of two random variables X and Y can be formulated as:
var[XY] = E[X?Y?] - E[XY]? (6)
According to Equation [2]and [T}
E[X?Y?] = cov[X?,Y?] + E[X?] E[Y?] o
= cov[X?, Y?] + (E[X]? + var[X]) - (E[Y]? + var[Y])
and:
E[XY]? = (cov[X,Y] + E[X]E[Y])? (8)

Afterwards, we substitute Equation [7]and [§]into Equation [6] and obtain:

var[XY] = cov[ X%, V2] + (E[X]? + var[X]) - (E[Y]? + var[Y]) — (cov[X, Y] + E[X]E[Y])*

(€))
When X and Y are independent, cov[X?2,Y?] = cov[X,Y] = 0, Equation 9| reduces to:
var[XY] = (E[X]? + var[X]) - (E[Y]? + var[Y]) — (E[X] E[Y])? (10)
= E[X)?var[Y] + E[Y]? var[X] + var[X] var[Y]
In the case that both X and Y has 0 mean, the above can be further reduced to:
var[XY] = var[X] var[Y] (11)

4 Sum of Random Variables

In this section, we revise the properties of the sum of several random variables. In particular, we
study a random variable Z given by

Z=%"x, (12)
=1

4.1 Mean of Sum of Random Variables

According to the linearity of expectation:

Em:ZMM (13)



4.2 Variance of Sum of Random Variables

The variance of multiple random variables can be derived as:

var(Z) = cov zn:Xi,zn:Xj
=1 j=1

14)
n n
= Z Z cov[X;, X;]
i=1 j=1
Provided independence between each X;, the above equation can be simplified as:
var(Z) = ZCOV[Xi7Xi]
i=1 (15)

= Zvar[Xi]
i=1

5 Dot Product of Random Vectors

Lemmal(I] states that both ¢ and k are vector with dimension dj,, whose components are independent
random variables with the following properties:

Elgs) = E[ki] =0

var[g;] = var[k;] = 1 (16)

where ¢ € [0, dy].
With the help of properties revised in Section[3]and 4] the mean of the dot product g - k is

d
Elg-k]=E [Z qkl
i=1

= Z E [gik;] a7

Similarly, we formulate the variance of ¢ - k, based on the properties in Section [3]and {

var[q - k] = var [i Qiki‘|

i=1
dp
= Z var [g;k;]
i=1

dy.
= Z var|g;] var[k;]

dy,
= Z 1
i=1

:dk}

(18)
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